86 research outputs found

    Dynamics of the frustrated Ising lattice gas

    Full text link
    The dynamical properties of a three dimensional model glass, the frustrated Ising lattice gas (FILG) are studied by Monte Carlo simulations. We present results of compression experiments, where the chemical potential is either slowly or abruptly changed, as well as simulations at constant density. One time quantities like density and two time ones like correlations, responses and mean square displacements are measured, and the departure from equilibrium clearly characterized. The aging scenario, particularly in the case of density autocorrelations is reminiscent of spin glass phenomenology with violations of the Fluctuation-dissipation theorem, typical of systems with one replica symmetry breaking. The FILG, as a valid on-lattice model of structural glasses can be described with tools developed in spin glass theory and, being a finite dimensional model, can open the way for a systematic study of activated processes in glasses.Comment: to appear in Phys. Rev. E, november (2000

    Ownership and control in a competitive industry

    Get PDF
    We study a differentiated product market in which an investor initially owns a controlling stake in one of two competing firms and may acquire a non-controlling or a controlling stake in a competitor, either directly using her own assets, or indirectly via the controlled firm. While industry profits are maximized within a symmetric two product monopoly, the investor attains this only in exceptional cases. Instead, she sometimes acquires a noncontrolling stake. Or she invests asymmetrically rather than pursuing a full takeover if she acquires a controlling one. Generally, she invests indirectly if she only wants to affect the product market outcome, and directly if acquiring shares is profitable per se. --differentiated products,separation of ownership and control,private benefits of control

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Large-scale sequencing identifies multiple genes and rare variants associated with Crohn's disease susceptibility

    Get PDF
    Genome-wide association studies (GWASs) have identified hundreds of loci associated with Crohn's disease (CD). However, as with all complex diseases, robust identification of the genes dysregulated by noncoding variants typically driving GWAS discoveries has been challenging. Here, to complement GWASs and better define actionable biological targets, we analyzed sequence data from more than 30,000 patients with CD and 80,000 population controls. We directly implicate ten genes in general onset CD for the first time to our knowledge via association to coding variation, four of which lie within established CD GWAS loci. In nine instances, a single coding variant is significantly associated, and in the tenth, ATG4C, we see additionally a significantly increased burden of very rare coding variants in CD cases. In addition to reiterating the central role of innate and adaptive immune cells as well as autophagy in CD pathogenesis, these newly associated genes highlight the emerging role of mesenchymal cells in the development and maintenance of intestinal inflammation.Large-scale sequence-based analyses identify novel risk variants and susceptibility genes for Crohn's disease, and implicate mesenchymal cell-mediated intestinal homeostasis in disease etiology.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    Methods for Characterising Microphysical Processes in Plasmas

    Full text link

    The Role of Prosodic Sensitivity in Children's Reading Development

    Get PDF
    While the critical importance of phonological awareness (segmental phonology) to reading ability is well established, the potential role of prosody (suprasegmental phonology) in reading development has only recently been explored. This study examined the relationship between children’s prosodic skills and reading ability. Hierarchical multiple regression analyses examined the unique contribution of word-level and phrase-level prosodic skills to the prediction of three concurrent measures of reading ability in 81 fourth-grade children (mean age 9;3 years). After controlling for phonological awareness and general rhythmic sensitivity, children’s prosodic skills predicted unique variation in word-reading accuracy and in reading comprehension. Phrase-level prosodic skills, assessed by means of an reiterative speech task, predicted unique variance in reading comprehension, after controlling for word reading accuracy, phonological awareness, and general rhythmic sensitivity. These results add to the growing body of evidence of the importance of prosodic skills in reading development

    Mixed-effects modeling of optimisation algorithm performance

    No full text
    SCOPUS: cp.kinfo:eu-repo/semantics/publishe
    corecore